Siemens IP-Module Spécifications

Naviguer en ligne ou télécharger Spécifications pour Détecteurs de fumée Siemens IP-Module. Siemens IP-Module Specifications [en] Manuel d'utilisatio

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 417
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs

Résumé du contenu

Page 1 - Position Decoder Module

SIMATIC S5IP 240Counter/Positioning/Position Decoder ModuleManual EWA 4NEB 811 6120-02bEdition 03

Page 2 - First Printing, March 1991

IP 240 IntroductionConventionsThe following conventions are used in this book and are listed for your reference:Convention Definition ExampleA box t

Page 3 - EWA 4NEB 811 6120-02c

Position Decoding IP 240DB20 LEN=35

Page 4

IP 240 Position DecodingStart routine FB 20Reset the flagareas usedConfigureIP 240 channel 1for positiondecodingSet output”RET INTPNT”EndEWA 4NEB 81

Page 5 - IP 240 Preface

Position Decoding IP 240Cyclic program FB 21yesnoyesyesyesyesnonoFB 26FB 25FB 24FB 23FB 22yesnoQ ”RET INTPNT”set?Enable set andstart buttonpressed?I

Page 6 - Introduction

IP 240 Position DecodingOperation/traverse program FB 25 yesnoyesyesFB 25nonoyesBackward traverse programactive?noForward traverseprogram active?Ent

Page 7 - Introduction IP 240

Position Decoding IP 240Control and output program FB 26noyesnoFB 26yesnoEMERG STOP”pressed?yesnoError bitset? (FY 11)yesnoLimit switch pressed?Rese

Page 8

IP 240 Position DecodingInterrupt service routine FB 27 and FB 28noyesnononoyesFB 27noRead interrupt req.(FB 170 FCT 3)Interrupt fromchannel 1?Inter

Page 9

Position Decoding IP 240OB 1 LEN=8 NETWORK 1 0000

Page 10 - Conventions

IP 240 Position DecodingFB 20 LEN=52

Page 11 - EWA 4NEB 811 6120-02a

Position Decoding IP 240FB 21 LEN=33

Page 12

IP 240 Position DecodingFB 22 LEN=34NETWORK 1 0000 REDEFINE INITIAL POINTFB22 : R

Page 13 - 1 System Overview

2 Module Description and Accessories3 Addressing4 Hardware Installation5 Operation6 Functional Description7 Position Decoding8 Counting9 IP 252 Expans

Page 14 - System Overview

Position Decoding IP 240FB 23 LEN=75

Page 15

IP 240 Position DecodingFB 23 LEN=75

Page 16

Position Decoding IP 240FB 24 LEN=97

Page 17

IP 240 Position DecodingFB 24 LEN=97

Page 18 - 2.2 Technical Specifications

Position Decoding IP 240FB 25 LEN=67

Page 19 - 2.2.2 Counting

IP 240 Position DecodingFB 25 LEN=67

Page 20 - 2.2.3 Inputs/Outputs

Position Decoding IP 240FB 26 LEN=75

Page 21

IP 240 Position DecodingFB 26 LEN=75

Page 22

Position Decoding IP 240FB 27 LEN=26NETWORK 1 0000 INTERRUPT SERVICE ROUTINE FOR

Page 23 - 2.3 LEDs

IP 240 Position DecodingFB 28 LEN=81NETWORK 1 0000 INTERRUPT SERVICE ROUTINE FOR

Page 24 - 2.4 Order Numbers

Figures1-1. Modes of the IP 240 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 11-2. IP 240 with and with

Page 25

Position Decoding IP 240FB 28 LEN=810039 REF8 :003A :AN F 16.7

Page 26

IP 240 Position DecodingFB 38 LEN=39NETWORK 1 0000 SAVE FLAGSFB38 SAVES FLAG WOR

Page 27 - 3 Addressing

Position Decoding IP 240FB 39 LEN=37NETWORK 1 0000 LOAD FLAGSWRITE THE STATES OF

Page 28 - Addressing IP 240

IP 240 Position DecodingFB 169 LEN=47NETWORK 1 0000NAME :STRU.WEGID :BGAD I/Q/D/B/T

Page 29 - IP 240 Addressing

8 Counting8.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 18.2 Principle of Operat

Page 30

Figures8-1. Actual Value Range and Overrange in Counting Mode . . . . . . . . . . . . . . . . . 8 - 18-2. Sequence Diagram for Counting Mode . . . .

Page 31

IP 240 Counting8 Counting8.1 ApplicationsIn this mode, the IP 240 can be universally used for pulse counting. The module can process pulsetrains wit

Page 32 - 4 Hardware Installation

Counting IP 240When the defined actual value range is exceeded, the counter enters overrange and the IP setsstatus bit UEBL (overflow).When set, the

Page 33

IP 240 Counting8.2.2 Final ValueStoring the final countWhen you evaluate the actual value, you are evaluating the current count. The IP also makes t

Page 34

Counting IP 240The following options are available for forcing the output:a) The digital output is to be set when the actual value reaches ”0”, and

Page 35 - 4.2.1 Wiring Method

IP 240 System Overview1 System OverviewIntelligent input/output modules (I/Os) extend the field of applications of the SIMATIC S5programmable contro

Page 36

IP 240 Counting8.2.4 Flagging with Status BitsStatus data is updated in every cycle of the module firmware on the IP.If you want information about t

Page 37

Counting IP 2408.2.5 Interrupt Generation and ProcessingStatus bits REF1, REF2, UEBL and UEBS can trigger an interrupt and are stored in the interru

Page 38 - 4.3.1 Inputs

IP 240 Counting8.3 Initializing Standard Function Blocks and Data Block Contents8.3.1 Configuring Function BlockFB 171 (STRU.DOS) Configuring and p

Page 39

Counting IP 240Table 8-1. Parameters for Configuring FB 171Para- Name meter Data Description typeBGAD D KF Module starting addressKANR D KF Cha

Page 40

IP 240 CountingEXT : KH 0000 to 0001 Control of count enabling by external or internal starting signalBit 0=1 Control of start of count by active si

Page 41

Counting IP 240Technical SpecificationsBlock number : 171Block name : STRU. DOSPLC Library numberCall length/Block lengthCPU Processing time 1S5-115

Page 42

IP 240 Counting8.3.2 Control Function BlockFB 172 (STEU.DOS) Control function block for counting. Functional descriptionThe control function block

Page 43 - ((1887/3))

Counting IP 240NoteIn the standard function blocks, scratch flags and system data areas are used fordata interchange with the IP 240 ( Technical Sp

Page 44

IP 240 Counting8.3.3 Contents of the Data BlockThe data block to be created must have least 36 words (DW0 to DW 35). The number of theselected data

Page 45

Counting IP 240Control bitsDL 17DR 177Databyte6 5 4 3 2 1 0000STRT0000DA1F0DA1S0AMSK000BitAMSK =1 All process interrupts for the channel are masked,

Page 46

System Overview1P 240In the position decoding, counting and positioning modes, the 1P 240 can be used as a standalonemodule in the U-range programmabl

Page 47

IP 240 CountingInterrupt request bytes for channel 1 and channel 2Channel 1Channel 1Channel 2Channel 2DL 20DR 20DL 21DR 217Databyte6 5 4 3 2 1 00000

Page 48

Counting IP 240Actual valueThe specified value is an absolute value. The sign (SG) is indicated in the status area (DW 19).Actual value in BCD000000

Page 49

IP 240 Counting8.4 Example for Counting: Fast Filling with Loose MaterialThe throughput in filling with loose material is measured using a pulse enc

Page 50

Counting IP 240Inputs, outputs, flags, timers and counters usedOPERAND SYMBOL COMMENTI 5.2 EMERG STOPI 5.3 START FILL PUSHBUT

Page 51

IP 240 CountingDB14 LEN=43

Page 52

Counting IP 240DB20 LEN=35

Page 53

IP 240 CountingFB 40 initialization programyesyesnonoyesyesnonoyesDepending on cause Q ”FILLING”flashes fast or slowlyReset F ”FILL ACTIV”Reset auxi

Page 54

Counting IP 240OB 1 LEN=8

Page 55

IP 240 CountingFB 38 LAE=39

Page 56 - 6.1.4 LEDs

Counting IP 240FB 39 LEN=37

Page 57 - 6.2 Programming

3 Addressing4 Hardware Installation5 Operation6 Functional Description7 Position Decoding8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Inte

Page 58 - 6.2.3 Data Blocks

IP 240 CountingFB 40 LEN=31

Page 59 - 6.4 Fault and Error Flagging

Counting IP 240FB 41 LEN=111

Page 60

IP 240 CountingFB 41 LEN=111

Page 61

Counting IP 240FB 171 LEN=38

Page 62 - 6.5 Multiprocessor Operation

10 Positioning11 Direct Data Interchange with the IP 24012 Response Times13 Encoder Signals14 Error Messages9 IP 252 Expansion9.1 Speed Measurement wi

Page 63

TablesFigures9-1. Speed Measurement with the IP 252 Closed-Loop Control Module . . . . . . . 9 - 19-2. Actual Speed Measurement via the IP 240 Modul

Page 64

IP 240 IP 252 Expansion9 IP 252 ExpansionWhen the IP 240 is used with the IP 252 closed-loop control module, control lines, which are onlyimplemente

Page 65 - 7 Position Decoding

IP 252 Expansion IP 240By expanding the IP 252 with IP 240 modules, it is possible to provide two or more control loopswith actual values from incre

Page 66

IP 240 IP 252 Expansion9.2 Data Interchange between S5 CPU -- IP 240 -- IP 252 During operation, data traffic between the IP 240 and the IP 252 is c

Page 67 - 7.2.2 Resolution

1P 252 Expansion1P 2409.3Configuring—When configuring the 1P 252 closed-loop control module, YOU must W the configuring switches —for speed measurem

Page 68 - 7.2.3 Reference Tracks

Figures2-1. Front Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 42-2. Block Diag

Page 69

IP 240 IP 252 Expansion9.4 Initializing the Configuring Function Block and Data Block Contents9.4.1 Configuring Function BlockFB 173 (STRU. 252) Co

Page 70

IP 252 Expansion IP 240NoteInterrupt servicing is not disabled in the configuring FBs. You must therefore writeyour STEP 5 program in such a way tha

Page 71

IP 240 IP 252 Expansion9.4.2 Data Block ContentsThe data block to be created must have at least 25 words (DW 0=to DW 24). The number of theselected

Page 72

10 Positioning10.1 Application and Functional Description . . . . . . . . . . . . . . . . . . . . . . . 10 - 110.1.1 Application . . . . . . . . . . .

Page 73 - 7.2.4 Hysteresis

11 Direct Data Interchange with the IP 24012 Response Times13 Encoder Signals14 Error Messages10.13 Methods of Synchronization . . . . . . . . . . . .

Page 74

10-1. Overview of IP 240 Configuring and Synchronization Options . . . . . . . . . . 10- 110-2. Controlled Positioning with Two Speeds . . . . . . . .

Page 75

10-1. Switching IP Digital Outputs D1 and D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10- 310-2. Selecting Positions 0 - 254 . . . .

Page 76

IP 240 Positioning10 Positioning10.1 Application and Functional Description10.1.1 ApplicationIn this mode, the IP 240 enables controlled positioning

Page 77 - 7.2.5 Forcing the IP Outputs

Positioning IP 24010.1.2 Functional DescriptionThis section includes a brief description of the IP 240's method of operation in ”positioning”mo

Page 78

IP 240 PositioningFig. 10-3. Controlled Positioning with the IP 240StartingpositionTargetpositionVSwitchingpointCut-offpointPosition value of thet

Page 79

IP 240 Module Description and Accessories2 Module Description and Accessories2.1 General Technical SpecificationsTemperatureOperation 0 to +55 °C(In

Page 80

Positioning IP 240b) Switching and signalling ranges for a positionDuring the approach to a target position, the IP 240 monitors the entry into rang

Page 81

IP 240 PositioningFig. 10-5. Status Bits on Approach to Position000Approaching the positionin negative directionApproaching the positionin positiv

Page 82

Positioning IP 240b) Approaching the target position in negative directionThe axis is at 1600 increments when the position is selected. The axis mus

Page 83

IP 240 PositioningTable 10-3. Axis Types and Actual Value RangesRotary axis9,999,998Linear axisMaximumactual value Table-9,999,999 +9,999,999-10+1

Page 84

Positioning IP 240b) The IP outputs control the direction of travelThe IP 240 sets one or both outputs in dependence on the required direction of tr

Page 85

IP 240 PositioningTo compensate backlash, you can specify that the IP output is to be disabled on a approach toposition only when the direction of t

Page 86

Positioning IP 240c) Synchronization with an external control signalWhen this method is used, each positive signal edge at the IN input resets the a

Page 87 - 7.3.2 Control Function Block

IP 240 PositioningBCD representationIf you require BCD-coded data for the purpose of documentation, definition or post-processing,you may choose thi

Page 88

Positioning IP 24010.3.2 Data in the Data Block and in the Transfer BufferIf the data interchange with the IP 240• is handled by standard function b

Page 89

IP 240 Positioning• 2-byte-dataTwo bytes are available for the following data items:- Distance value of range BEE3 for position 0Table 10-6. Layout

Page 90

Module Description and Accessories IP 2402.2 Technical SpecificationsThe IP 240 has two independent channels. In the IP 252 expansion mode, the enc

Page 91

Positioning IP 240Numerical representation and ranges for input and output valuesThe table below provides an overview of the digit positions actuall

Page 92

IP 240 Positioning10.4.2 Rotary AxisIn the case of a rotary axis, the traverse path is closed and is not limited. A revolution can comprisea maximum

Page 93

Positioning IP 240Maximum traversing speedThe encoder pulses acquired by the IP are counted in a counter chip. The current (internal) count isread o

Page 94

IP 240 Positioning10.5 Switching the IP OutputsThe IP 240 is equipped with two digital outputs (D1 and D2) for each channel.You have two options for

Page 95

Positioning IP 24010.5.2 The IP Outputs Control the Traversing SpeedWhen you configure DAV=0 or DAV=1, you pass control of the traversing speed to t

Page 96

IP 240 PositioningFig. 10-13. Switching Performance of the IP Outputs when DAV=2OutputD2SampleactualvaluePositionvalidOutputD1BEE1Positive directi

Page 97

Positioning IP 240Fig. 10-14. Contactor Control of a Three-Phase MotorEmer-gencylimitswitchEmer-gencylimitswitchK1 K2 K4K3K1 K2Axis slides Emerge

Page 98

IP 240 Positioning10.6 Backlash Compensation (LOSE) Backlash in the position decoding system reduces the positioning accuracy. To prevent this, allp

Page 99 - 67: KH = 7450;

Positioning IP 240If the actual value is greater than the position value of a newly selected position, the positioningprocedure must be subdivided i

Page 100 - Position Decoding IP 240

IP 240 Positioning10.6.2 Backlash Compensation during Reference Point ApproachCompensation of the backlash during reference point approach ( Sectio

Page 101 - IP 240 Position Decoding

IP 240 Module Description and AccessoriesInput frequencies Pulse inputs:-Symmetrical signals max. 500 kHz in position decoding and positioning modem

Page 102

Positioning IP 240Actual value range and overrangeThe actual value range is defined as -9,999, 999 to +9,999,999.Fig. 10-17. Actual Value Range an

Page 103

IP 240 PositioningYou specify the resolution in configuring parameter AFL:: JU FB 167NAME : STRU.POS::AFL : KF x x=1 Single resolutionx=2 Twofol

Page 104

Positioning IP 24010.7.2 Zero OffsetBy transferring a zero offset (NVER), you can allocate a new actual value to the current position.You may also m

Page 105

IP 240 Positioningb) Additive zero offsetThe new actual value is computed as follows when you specify an additive zero offset: Actualnew=Actualold +

Page 106

Positioning IP 240The table below shows the contents of the data block for a zero offset.A negative value must be spe-cified as two's complemen

Page 107

IP 240 Positioning10.8 Position Data for Positions 1 to 254Position data includes:• the position value designating the absolute location of the posi

Page 108

Positioning IP 240Entering the position numbers and position values in the data blockThe area beginning with DW 60 is reserved for position numbers

Page 109

IP 240 PositioningThe position number assigned to a position need not be identical to the number of the positionentry.It is more practical, however,

Page 110

Positioning IP 240When the actual value is within a range, the associated status bit BEE1, BEE2 or BEE3 is set to zero.Changes in the values of thes

Page 111

IP 240 PositioningTransferring the distance values with the configuring FBThe distance values are initially transferred to the IP 240 when you confi

Page 112

Only qualified personnel should install or maintain this equipment after becoming thoroughly familiarwith all warnings, safety notices, and maintenanc

Page 113

Module Description and Accessories IP 2402.2.3 Inputs/OutputsThe IP 240 provides two options for connecting sensors to the pulse inputs:• All senso

Page 114

Positioning IP 240Zero mark monitoringZero mark monitoring is used to detect spurious or missing pulses, and is possible only when• the number of en

Page 115

IP 240 Positioning10.10 Initializing the Parameters for Interrupt Generation (PRA1, PRA2, ABIT)The following status bits have interrupt capability,

Page 116

Positioning IP 240When using an S5-150U or S5-155U (150 mode), note that the ABIT parameter must also beinitialized. In these programmable controlle

Page 117

IP 240 PositioningTable 10-15. Contents of Data Words 8 to 10DatabyteBit7654 3210DescriptionDL 8 2726252423222120Error no. 3DR 8 2726252423222120E

Page 118

Positioning IP 24010.13 Methods of SynchronizationPositioning is possible with the IP 240 only when the actual value has been synchronized. Threemet

Page 119

IP 240 PositioningFig. 10-22. Location of the Reference Point on Reference Point ApproachCountingpulsesPositive direction of travelActual value wh

Page 120

Positioning IP 240If you configured the channel with DAV=2 (the IP controls the direction of travel duringpositioning) and want to pass control of t

Page 121

IP 240 Positioningb) If the IP outputs are to be controlled by the module firmware (HAND=0), they can beenabled immediately (FREI=1).If the IP 240 c

Page 122

Positioning IP 240Switching the IP outputs during reference point approach (HAND=0)The switching performance of the IP outputs specified when the ch

Page 123

IP 240 Positioningc) DAV=2After the outputs have been enabled, the IP output specified by setting control bit DA1S orDA2S is set.The output is reset

Page 124

IP 240 Module Description and Accessories 5 Vsym.pulse trainA, A, B, B, Z, Z 5 VA*, B*, Z*IN, CLK, GT 24 VA*, B*, Z*IN, CLK, GTData for rated voltag

Page 125

Positioning IP 240Status of range bits BEE1, BEE2 and BEE3 during reference point approachWhen reference point approach is selected, all three range

Page 126 - 8 Counting

IP 240 PositioningInterrupting a reference point approachYou can interrupt a reference point approach by transferring• control bit HASY = 0 or• cont

Page 127 - Counting IP 240

Positioning IP 240The new position number can be transferred to the IP 240 together with SOSY=1. Refer toSection 10.14.1 for information on how to s

Page 128 - 8.2.3 Forcing the IP Output

IP 240 Positioning10.13.3 Synchronization with an External Control SignalWhen synchronization with an external control signal, referred to from here

Page 129

Positioning IP 240Fig. 10-29. Synchronization with an External Control Signal at the IN InputSample actual valueNew actual valueOld ControlbitZYSY

Page 130 - IP 240 Counting

IP 240 PositioningWarningCyclic synchronization is also allowed when the IP outputs are set. The positiontransferred goes into force immediately on

Page 131

Positioning IP 24010.14 Selecting a PositionPositioning is started by selecting a position. The IP 240 uses the position value for the positionselec

Page 132

IP 240 PositioningNoteThe IP 240 accepts the specified position number only when control bit HAND is notset. In addition,• status bit SYNC must be s

Page 133

Positioning IP 240If it is necessary to disable the IP outputs, you can do so by transferring FREI=0 and, at the sametime, specify the new position

Page 134

IP 240 PositioningTable 10-18. Contents of the DB and the Transfer Buffer for Writing Position 0Bit76543210DescriptionData byteDatablockOffsetin t

Page 135

Module Description and Accessories IP 240Digital outputsNumber of outputs 4 (2 per channel)Galvanic isolation yesin groups of 1Supply voltage VpRa

Page 136 - 8.3.2 Control Function Block

Positioning IP 24010.15 Controlling the Digital Outputs During PositioningYou can use IP outputs D1 and D2 to• change the traversing speed or• contr

Page 137

IP 240 PositioningControlling the IP outputs via the S5 CPU (HAND=1)You can define the states which the IP outputs are to assume via the S5 CPU usin

Page 138

Positioning IP 240Table 10-19. Contents of the DB and the Transfer Buffer for Transferring the Control Bits Bit76543210DescriptionData byteDatab

Page 139

IP 240 Positioning10.16 Reading and Evaluating the IP Status InformationThis includes:• the current (feedback) position number• the status bits• the

Page 140

Positioning IP 240Reading the status information from the IP 240with control FB 168 in direct data interchangeYou must initialize FB 168 as follows

Page 141

IP 240 PositioningBit is ”0”Status bit Bit is ”1”ZBEV(target rangeexited)BEE1BEE2BEE3PositioningBEE1BEE2BEE3Referencepoint BEE1approach(HASY=1)BEE2P

Page 142

Positioning IP 240Status bitActual value exited range BEE2. Rever-sal of direction of travel is possible.RIUM(Reversal ofdirection)A new position nu

Page 143

IP 240 PositioningWhen they have been read, status bits NPUE, UEBL, MESE and UEBS are reset on the IP 240, i.e.these bits can be read out only once.

Page 144

Positioning IP 240Table 10-21. Contents of the DB and the Transfer Buffer on Reading the Interrupt Request Bytes Bit76543210DescriptionData byte

Page 145

IP 240 PositioningExamples for interrupt bits BE1 to BE3, ZBV and RIUWithoutbacklashcompensationTargetpositionLinearaxisRotary axisPositivedirection

Page 146

IP 240 Module Description and AccessoriesEncoder supplyThe power supply for 5 V encoders is taken from the programmable controller's power supp

Page 147

Positioning IP 240Interrupt bit Bit is ”1”UEB(Overflow)The actual value has exited the valid actual value range and entered theoverrange.MESUBS

Page 148

IP 240 PositioningThe modified data go into force as soon as they are transferred. The IP 240 updates the status bitsand generates any pending inter

Page 149

Positioning IP 240If you use FB 168 to write the new position values, you must specify the entry to be transferred inthe data block when you initial

Page 150

IP 240 Positioning10.18.2 Changing the Distance Values for Ranges BEE1 to BEE3Table 10-23. Contents of the Data Block and the Transfer Buffer for

Page 151

Positioning IP 240Transferring modified distance values for the switching and signalling rangeswith control FB 168 in direct data interchangeYou mus

Page 152

IP 240 PositioningTable 10-24. Contents of the Data Block and the Transfer Buffer for Changing the Zero OffsetZero offset in binaryA negative valu

Page 153

Positioning IP 24010.19 Interrupting Positioning and Skipping of a PositionPositioning is interrupted when• control bit FREI=0 is transferred.In thi

Page 154

IP 240 PositioningIf the channel was structured for backlash compensation and the actual position is above thetarget position (RICH=1), output D2 is

Page 155

Positioning IP 24010.21 Positioning with the IP 240The flowchart below illustrates the functional sequence for positioning with the IP 240.In the ex

Page 156 - 9 IP 252 Expansion

IP 240 Positioning10.21.2 Positioning with the IP Controlling the DirectionFig. 10-32. Positioning with the IP 240 Controlling the Direction of Trav

Page 157 - IP 252 Expansion IP 240

Module Description and Accessories IP 2402.4 Order NumbersOrder No.Module without instruction manual 6ES5 240-1AA21Adapter casing for 2 modules in

Page 158 - IP 240 IP 252 Expansion

Positioning IP 24010.22 Error Processing Following Positioning ControlErrors occurring during transfer of data to the IP are flagged• in the PAFE by

Page 159 - YOU must

IP 240 Positioning10.23 Data Block Contents and Initializing the Standard Function Blocks10.23.1 The Data BlockCreating the data blockThe standard f

Page 160

Positioning IP 240Contents of the data blockTable 10-27. Contents of the Data Block (DW 0 to DW 821)DW 59Final position of the rotaryaxisDW 45 to

Page 161

IP 240 PositioningContents of the data wordsYou must set the unassigned positions of the data words you want to transfer to the IP 240 to ”0”.Functi

Page 162 - 9.4.2 Data Block Contents

Positioning IP 240ID for the configured mode and data block numberDL 23DR 237Databyte6 5 4 3 2 1 0025024023122021020Bit027026DB no.Following error-f

Page 163

IP 240 PositioningStatus bitsDatabyte7DL 29DR 296 5 4 3 2 1 0Bit0DA20DA1RIUMMESEZBEVBEE3UEBSBEE2DRBRBEE1NPUERICHUEBLSYNCRIUM = 1 Range BEE2 was exit

Page 164

Positioning IP 240Final valueSE21821022SE2172921SE2162820Binary representation BCD representationDL 32DR 32DL 33DR 33SE22021224106104102100SG1051031

Page 165

IP 240 PositioningData for position 0Position value for position 0SE21921123SE21821022SE2172921SE2162820Binary representation BCD representationDL 3

Page 166

Positioning IP 240DL43DR437Databyte6 5 4 3 2 1 02132521224211232102229212820Bit2152721426Distance value for range BEE3DL44DR447Databyte6 5 4 3 2 1 0

Page 167 - 10 Positioning

IP 240 PositioningFinal position of the rotary axis 021921123 021821022 02172921 02162820Binary representation BCD representationDL 48DR 48DL 49DR 4

Page 168 - 10.1.2 Functional Description

4 Hardware Installation5 Operation6 Functional Description7 Position Decoding8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Interchange with

Page 169 - IP 240 Positioning

Positioning IP 240Position number and position value for positions 1 to 254In the tables below, the first word for a position entry is always identi

Page 170 - Positioning IP 240

IP 240 Positioning10.23.2 The Configuring Function BlockFB 167 (STRU.POS) Configures and initializes the IP 240 for ”positioning” modeFunctional des

Page 171

Positioning IP 240Table 10-28. Parameters for Configuring FB 167NAMEParametertypeDatatypeDescriptionBGADKANRDBNRAFLIMPBCDPRA1PRA2RUNDLOSEDAVPAFEBE

Page 172

IP 240 PositioningBCD : KY x,y Number formatx /y=0 Binary x /y=1 BCDx determines the following values:• Position values for positions 1 to 254• Dist

Page 173 - Switching the IP outputs

Positioning IP 240PAFE : QB QB or FY (0 to 239) for flagging errors ( Section 6.4)BER : KF 0 Addressing in P area1 Addressing in Q areaABIT : KYx,y

Page 174

IP 240 PositioningTechnical SpecificationsBlock number : 167Block name : STRU. POSAG Library numberCall length/Block lengthCPU Processing time 1S5-1

Page 175

Positioning IP 24010.23.3 The Control Function BlockFB 168 (STEU.POS) Control function block for ”positioning” modeFunctional DescriptionThe control

Page 176 - 10.3 Numerical Representation

IP 240 PositioningInvoking the control function blockThe control FB is normally invoked in the cyclic program and in the interrupt service OBs.Name

Page 177

Positioning IP 2403 - Read interrupt request bytes41 1 to Transfer position value for the yth entry in the DB.255 y= Entry to be transferred42 1 to

Page 178 - - Actual value

IP 240 PositioningTechnical SpecificationsBlock number : 168Block name : STEU. POSAG Library numberCall length/Block lengthCPUProcessing time1Functi

Page 179

Figures3-1. Locations of the Address Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 1EWA 4NEB 811 6120-02a

Page 180 - 10.4.1 Linear Axis

Positioning IP 24010.24 Sample Program for Processing Data Words with a Data Word NumberExceeding 255If a data block exceeds a length of 256 data wo

Page 181 - 10.4.2 Rotary Axis

IP 240 Positioning**************************SAMPLE PROGRAM FOR S5-115U**************************NAME :L/T DWXID :DBNR I/Q/D/B/T/C: D KM/KH/KY

Page 182

Positioning IP 240***********************************SAMPLE PROGRAM FOR S5-135U AND 150U***********************************ADDRESS REQUIRED IN PROGR

Page 183 - 10.5 Switching the IP Outputs

IP 240 Positioning**************************SAMPLE PROGRAM FOR S5-155U**************************THE ADDRESS REQUIRED IN THE PROGRAMDEPENDS ON THE DA

Page 184

Positioning IP 24010.25 Example: Removing Parts from a Die-Casting MachineFinished parts are to be taken from a die-casting machine and deposited at

Page 185

IP 240 PositioningFlags, inputs, outputs, timers and DBs OPERAND SYMBOL COMM

Page 186

Positioning IP 240OPERAND SYMBOL COMMENTARYFY 65 ERROR REASON FOR SETTING GROUP ERROR FLAG (F 64.7)F 65.0 ERR00 REF. POINT APPROACH TERM. WITHOUT SY

Page 187

IP 240 PositioningOPERAND SYMBOL COMMENTARYFY 200 PAFE CONTENTS SEE INSTR. MAN. SEC. 6.4T 1 POSTIMER WATCHDOG TIMER FOR POSITIONINGT 2 STOPTIMER TIM

Page 188

Positioning IP 240Functional sequence:yesRestart routine (FB 20)START”Start”?Configure IP 240:- Channel 1 for positioning modeCompute reference poi

Page 189 - 10.7 Actual Value Generation

IP 240 PositioningCyclic program for x axis (FB 30)yesnonononoMain switch on?STARTRefe-rence point approach exe-cuted?ENDRead actual value and statu

Page 190 - 10.7.1 Resolution (AFL)

IP 240 Addressing3 AddressingThe IP 240 module reserves an address space of 16 bytes in the I/O areas. All data are exchangedvia these areas, which

Page 191 - · Specified resolution

Positioning IP 240Reference point approach FB 31yesnoyesReference point approach in progress?STARTReset IP outputsPreselect negative directionSelect

Page 192 - 10.7.2 Zero Offset

IP 240 PositioningSelect next position (FB 32)yes- Prepare for ”open gripper”- Write next eject position to transferflag- Decide whether machining c

Page 193

Positioning IP 240Select and approach position (FB 33)Transfer position number and controlbits (FREI = "1") to IPRead out status from IP n

Page 194 - = - 2,000

IP 240 PositioningInterrupt service routine for x axis (FB 34)STARTStart watchdog timer for motordecelerationnoCut-off range entered?yesTarget range

Page 195

Positioning IP 240DB100 TRAVERSING DATA ##################################

Page 196

IP 240 Positioning DB128 0: KH = 0000; 1: KS =&a

Page 197

Positioning IP 240 69: KH = 0004; 4TH POS. NO. 70: KH = 0025; ] 4TH VALUE 71: K

Page 198

IP 240 PositioningFB 20 NETWORK 1 0000

Page 199

Positioning IP 240FY 60 = NPOS NO. OF NEXT POS. TO BE APPROACHEDFY 61 = RESPONSE RESPONSE WHEN POSITION

Page 200

IP 240 PositioningNETWORK 5 0051 RELOAD SCRATCH FLAGS / RS DATA0051 : ------------------------

Page 201

Addressing IP 240Switch settingsI/O area(P)extendedI/O area(Q)I/O area1281441601761922082242400163248648096112144128160176192208224240Startingaddres

Page 202

Positioning IP 240FB 30 NETWORK 1 0000

Page 203

IP 240 PositioningI 32.0 = MAINSW MAIN SWITCH: ENABLE FOR CONTROL SYSTEMF 0.0 = RLO0 FLAG FOR "0&q

Page 204

Positioning IP 240F 64.2 = REFACTIV REF.POINT APPROACH IN PROGRESSF 64.0 = POSACTIV POSITIONING IN PROGRESSQ

Page 205

IP 240 Positioning0082 :0083 :A I 33.2 -GRUP LIMIT SWITCH MONITORING0084 :R Q 5.1 -CLOSGR GR

Page 206

Positioning IP 240FB 31 NETWORK 1 0000#

Page 207

IP 240 Positioning0042 :JU FB 1680043 NAME :STEU.POS0044 DBNR : KF +00045 FKT : KY 20,0 TRANSFER CONTROL BITS00

Page 208

Positioning IP 240FB 32 NETWORK 1 0000#

Page 209

IP 240 PositioningFB 33 NETWORK 1 0000##

Page 210

Positioning IP 2400041 :0042 :A F 63.3 -BEE20043 :A F 63.1 -RICH0044 := Q 4.1 -NEGPOS0045 :JC =NTW2

Page 211

IP 240 PositioningNETWORK 2 0061 ERROR MONITORING0061 :A T 1 -POSTIMER WHEN TIME EXCEEDED0062 :S F 6

Page 212

IP 240 AddressingUse of the IP 240 in the S5-183U, S5-184U, S5-185U and S5-186U expansion unitsIf you use the IP 240 in one of these EUs, set the st

Page 213

Positioning IP 240FB 34 NETWORK 1 0000#

Page 214 - a

IP 240 PositioningNETWORK 3 0031 CUT-OFF RANGE REACHED0031 :AN F 69.3 -BE20032 :JC =NTW30033 :A F 0.1 -RLO10

Page 215

Positioning IP 240NETWORK 6 0051 HARDWARE FAULTS0051 :AN F 68.0 -UEB0052 :AN F 68.1 -NPU0053 :AN F 68.2 -DR

Page 216 - 10.14 Selecting a Position

IP 240 PositioningFB 167 NETWORK 1 0000

Page 217

Positioning IP 240OB 2 NETWORK 1 0000

Page 218 - 10.14.2 Selecting Position 0

11 Direct Data Interchange with the IP 24011.1 Status and Job Request Register (Offset 15) . . . . . . . . . . . . . . . . . . . . . 11 - 211.1.1 Stat

Page 219

Figures11-1. Flowchart for ”Read data from the IP 240” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11- 511-2. Flowchart for ”Write data to

Page 220

IP 240 Direct Data Interchange with the IP 24011 Direct Data Interchange with the IP 240For time-critical applications, it may be necessary to excha

Page 221

Direct Data Interchange with the IP 240 IP 240In the following, it has been assumed that the channel has been configured with standard FB 167for pos

Page 222

IP 240 Direct Data Interchange with the IP 240Table 11-1. Contents of the Status RegisterBit Abbr. Meaning when bit is ”1”Job terminated,The job

Page 223

IP 240 Replacement Pages for IP 240 Manual, Edition 3Supplement to the IP 240 Manual, Order No. 6ES5 998 0TB22, Edition 3Use of the IP 240 in the S7-

Page 224

5 Operation6 Functional Description7 Position Decoding8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Interchange with the IP 24012 Response

Page 225

Direct Data Interchange with the IP 240 IP 24011.1.2 Job Request RegisterThe S5 CPU enters the job number in the job request register, thus telling

Page 226

IP 240 Direct Data Interchange with the IP 24011.2 Data Transfer from the IP 240 to the S5 CPUThe S5 CPU can request data from the IP 240. To make t

Page 227

Direct Data Interchange with the IP 240 IP 240Fig. 11-1. Flowchart for ”Read Data from the IP 240” (Continued)EndnonoyesError detected?Data not ye

Page 228

IP 240 Direct Data Interchange with the IP 24011.3 Data Transfer from the S5 CPU to the IP 240The S5 CPU can forward new data to the IP 240. To do s

Page 229

Direct Data Interchange with the IP 240 IP 240The flowchart shown below illustrates the communication procedure for ”Write data to theIP 240”Fig. 11

Page 230

IP 240 Direct Data Interchange with the IP 240Fig. 11-2. Flowchart for ”Write Data to the IP 240” (Continued)nononoyesError detected?Data not yet

Page 231 - DR n+3

Direct Data Interchange with the IP 240 IP 24011.4 Contents of the Transfer Buffer11.4.1 Position Decoding ModeRead actual value and status areaWhen

Page 232 - : JU FB 168

IP 240 Direct Data Interchange with the IP 240SYNC =1 Reference point approach was terminated with synchronizationDRBR =1 Wirebreak/short-circuit in

Page 233

Direct Data Interchange with the IP 240 IP 240Write initial and final track valuesTo change the initial value and final value for a track, you must

Page 234

IP 240 Direct Data Interchange with the IP 240Write control bitsTo initialize control bits, you must load the new control bits into the transfer buf

Page 235

Figures4-1. Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 44-2. Con

Page 236

Direct Data Interchange with the IP 240 IP 24011.4.2 Counting ModeRead actual value, final value and status areaThe IP 240 makes the actual value, t

Page 237

IP 240 Direct Data Interchange with the IP 240REF2 =1 Final value was storedUEBL =1 Actual value out of range (<- 9,999)UEBE =1 Final value out o

Page 238

Direct Data Interchange with the IP 240 IP 240Write initial countTo modify the initial count value, you must enter the new value in the transfer buf

Page 239

IP 240 Direct Data Interchange with the IP 24011.4.3 Reading Error MessagesThe IP 240 makes the error available in the transfer buffer when you tran

Page 240

Direct Data Interchange with the IP 240 IP 24011.5 Sample ProgramsThe following sample programs show how to program direct data interchange with the

Page 241 - 10.23.1 The Data Block

IP 240 Direct Data Interchange with the IP 240: L M 239.4 -ERR ERROR?: JC =ERR2 JUMP TO ”READ ERROR MESSAGES”:: L PY224 TRANSFER BCD-CODED ACTUAL V

Page 242 - DW 32 to

Direct Data Interchange with the IP 240 IP 24011.5.2 Writing Data to the IP 240The module is set to module address 160 and channel 2 is configured f

Page 243

IP 240 Direct Data Interchange with the IP 240 : L FY 142 TRANSFER BCD DECADES 10^3 AND 10^2 : T PY 161 OF THE INITIAL VAL. FOR THE 3RD TR

Page 244

Direct Data Interchange with the IP 240 IP 240ERR3 : L KH0001 LOAD JOB NUMBER FOR ”LOAD ERROR: T PY175 MESSAGES” AND TRANSFER JOB NO.:STA5 : L PY175

Page 245

12 Response Times12.1 Structure of a Firmware Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 112.2 Computing the Respons

Page 246

IP 240 Hardware Installation4 Hardware Installation4.1 Installation4.1.1 Suitable Programmable Controllers and Expansion UnitsThe IP 240 can be used

Page 247

12-1. Firmware Execution Times, Position Decoding Mode . . . . . . . . . . . . . . . . . . . 12 - 412-2. Firmware Execution Times, Counting Mode . . .

Page 248 - = 0 Relative zero offset

IP 240 Response Times12 Response TimesThe response time is the time between reaching of a setpoint and the IP 240's reaction.The signals from t

Page 249

Response Times IP 24012.2 Computing the Response TimeUsing channel 1 as example, Figure 12-2 shows which FW slices must be taken into account whenco

Page 250

IP 240 Response Times Fig. 12-3. Response Time for Evaluation of the Actual Value and of Wirebreakand Zero Mark ErrorsSetpoint reachedor error hasoc

Page 251

Response Times IP 24012.3 Firmware Execution TimesThe execution time of the individual firmware slices depends on• the modes in which the channels a

Page 252

IP 240 Response TimesChannel 2: • Base time without configuring tA=45µs• Position decoding mode tWW= 520 µs• 8 tracks used, without hysteresis 8 x t

Page 253 - • Actual value

Response Times IP 240Positioning modeTable 12-3. Firmware Execution Times, Positioning ModeDescriptionBase time without configuring 45 µsAbbrev.Ma

Page 254

13 Encoder Signals13.1 Signal Forms and Timing Requirementsfor Incremental Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 255

13-1. Signal Forms: Symmetrical Encoder Signals A/A, B/B, Z/Z andAsymmetrical Encoder Signals A*, B*, Z* . . . . . . . . . . . . . . . . . . . . . . .

Page 256

IP 240 Encoder Signals13 Encoder SignalsThis section discusses the requirements for the forms and timing of the signals for the IP 240. Thefollowing

Page 257

Hardware Installation IP 240S5-115U expansion unit, ER 701-3 subrack7PS IM0 1 2 3 4 5 6NoteIf the IP 240 is operated in an ER 701-3 expansion unit,

Page 258 - Format Description

Encoder Signals IP 24013.1.2 Timing RequirementsThe following diagrams show the timing requirements for signals A, B and Z at the IP 240's inpu

Page 259

IP 240 Encoder SignalsFig. 13-2. Timing Diagram for Symmetrical Incremental Encoders (Continued)A signalA signalB signalB signalZ sign.1)Z sign.Z

Page 260 - Exceeding 255

Encoder Signals IP 240Timing requirements for encoders with asymmetrical signalsFig. 13-3. Timing Diagram for Asymmetrical Encoderst5t51) Position

Page 261

IP 240 Encoder SignalsThe IN signal is evaluated by the IP 240 module firmware. For this reason, acquisition of the signaledges may sometimes be def

Page 262

Encoder Signals IP 240Connecting the synchronization signal to the IN inputFig. 13-6. Timing Diagram for the Synchronization Signal, Positioning M

Page 263

14 Error Messages14.1 Hardware Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 - 114.2 Error Messa

Page 264

14-1. Errors Flagged in the PAFE Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 - 114-2. Hardware Faults . . . .

Page 265

IP 240 Error Messages14 Error MessagesIf you use standard FBs 167 to 173 for data interchange between S5 CPU and IP 240, you canascertain whether an

Page 266

Error Messages IP 24014.2 Error Messages in Position Decoding and Counting Mode14.2.1 Parameter and Data ErrorsIn position decoding and counting mod

Page 267

IP 240 Error Messages14.2.2 Communications ErrorsCommunications errors can occur when you interchange data directly with the IP 240 withoutusing con

Page 268

IP 240 Hardware InstallationS5-183U expansion unit 1)3 15511 19 27 35 43 51 59 67 75 83 91 107 123 131 139 14799 115 163S5-184U expansion unit 1)155

Page 269

Error Messages IP 24014.4.2 Data ErrorsThe specified data is checked by the module firmware. If standard function blocks are used fordata interchang

Page 270

IP 240 Error MessagesTable 14-7. Data Errors in Positioning Mode (Continued)Chan. 1DescriptionExten-sionChan. 2Error code for60 90 nn Position num

Page 271

Error Messages IP 240Table 14-7. Data Errors in Positioning Mode (Continued)DescriptionExten-sionChan. 2Chan. 1Error code forMore than one synchro

Page 272

A-1IP 240EWA 4NEB 811 6120-02bAdapter Casing (S5 Adapter)In this chapter, you will learn how to install modules in the adapter casing, and what you

Page 273

A-2IP 240EWA 4NEB 811 6120-02bA.1 PrerequisitesThe following prerequisites must be observed as regards the use of S5modules in the S7-400: Check with

Page 274

A-3IP 240EWA 4NEB 811 6120-02bA.2 Installing an Adapter Casing in the S7-400To install an S5 module in an S7-400, you must first install the adapter c

Page 275

A-4IP 240EWA 4NEB 811 6120-02bA.3 Inserting S5 Modules in the Adapter CasingProceed as follows to insert an S5 module in the adapter casing:1. Set an

Page 276

A-5IP 240EWA 4NEB 811 6120-02bA.4 Interrupt ProcessingThe adapter casing converts S5 interrupts into S7 interrupt functions and in-terrupt signals.All

Page 277

A-6IP 240EWA 4NEB 811 6120-02bA.5 Technical SpecificationsDimensions and WeightDimensions WHD 50mm290mm210mm(1.96 in. x 11.41 in. x8.26 in.)Weight

Page 278

B-1IP 240EWA 4NEB 811 6120-02bAddressing S5 Modules (Adapter Casing and IM 463-2)This chapter describes how to address S5 modules inserted in the ada

Page 279

Hardware Installation1P 2404.2 Wiring4.2.1 Wiring MethodII~ Base connector Xl,Submin. D-type socket connector (1 5-pin)X2 and X4ShieldFixing screw, 4-

Page 280

B-2IP 240EWA 4NEB 811 6120-02bB.1 Addressing S5 ModulesThere are two ways of using an IP xxx S5 module in the S7-400: By installing it in the adapter

Page 281

B-3IP 240EWA 4NEB 811 6120-02bS5 modules in the S7-400 may be addressed in the following addressingareas: I/O area (P area) Extended I/O area (Q, IM

Page 282

B-4IP 240EWA 4NEB 811 6120-02bThe CPU and an IP (an IP being an intelligent I/O module) interchange datavia the S5 bus interface and a 2 Kbyte dual-po

Page 283

C-1IP 240EWA 4NEB 811 6120-02bThe IP 240 Counter, Position Decoder andPositioning ModuleThis chapter describes the counting, position decoding and pos

Page 284

C-2IP 240EWA 4NEB 811 6120-02bC.1 OverviewThis addendum supplements Chapters 7, 8 and 10 of the Manual. It describesthe standard functions of the IP 2

Page 285

C-3IP 240EWA 4NEB 811 6120-02bResult:The software is installed in the following directories on the target drive:Software DirectoryCounting and positio

Page 286

C-4IP 240EWA 4NEB 811 6120-02bC.2 Counting FunctionsFunction FC 171 (STRU_DOS)The call, meaning and parameter values for the FC 171 function are de-s

Page 287

C-5IP 240EWA 4NEB 811 6120-02bFunction FC 172 (STEU_DOS)The call, meaning and parameter values for the FC 172 function are de-scribed below.Ladder Dia

Page 288

C-6IP 240EWA 4NEB 811 6120-02bThe technical specifications for FC 171 and FC 172 are listed below:FC 171 FC 172Block number 171 172Block name STRU_DOS

Page 289

C-7IP 240EWA 4NEB 811 6120-02bC.3 Position Decoding FunctionsFunction FC 164 (STRU_WEG)The call, meaning and parameter values for the FC 169 function

Page 290

IP240Hardware Installation4.2.2 Connector Pin AssignmentsFront Connector Pin AssignmentsX21X46‘ 15014013012011010 c), 90706050403020X31X5X6–A—ii–M—B–E

Page 291

C-8IP 240EWA 4NEB 811 6120-02bFunction FC 170 (STEU_WEG)The call, meaning, and parameter values for the FC 165 function are de-scribed below.Ladder Di

Page 292

C-9IP 240EWA 4NEB 811 6120-02bThe technical specifications for FC 169 and FC 170 are listed below:FC 169 FC 170Block number 169 170Block name STRU_WEG

Page 293

C-10IP 240EWA 4NEB 811 6120-02bC.4 Positioning FunctionsFunction FC 167 (STRU_POS)The call, meaning, and parameter values for the FC 167 function are

Page 294

C-11IP 240EWA 4NEB 811 6120-02bDBNR: INT = xx = Depends on the CPU used (0 is not permitted)For the values of all other parameters, please refer to t

Page 295

C-12IP 240EWA 4NEB 811 6120-02bThe technical specifications for FC 167 and FC 168 are listed below:FC 167 FC 168Block number 167 168Block name STRU_PO

Page 296

C-13IP 240EWA 4NEB 811 6120-02bC.5 Differences between SIMATIC S7 and SIMATIC S5As a rule, the following applies for SIMATIC S7: The memory locations

Page 297 - With offset 15 you address:

C-14IP 240EWA 4NEB 811 6120-02bC.6 Programming Example for “Counting” ModePrerequisites, Settings, Blocks and AddressesThe programming example describ

Page 298 - 11.1.1 Status Register

C-15IP 240EWA 4NEB 811 6120-02bThe following interrupt settings are required in the CPU: Process interrupt: OB 40, Interrupt: I1 (S5 assignment: IA)

Page 299

C-16IP 240EWA 4NEB 811 6120-02bThe inputs and outputs are mapped onto memory bits at the beginning andend of OB 1. Within the test program, only the m

Page 300 - Read error codes

C-17IP 240EWA 4NEB 811 6120-02bStart-up Program and Error ResponsesThe start-up program is located in OB 100. When OB 100 has been pro-cessed, you can

Page 301 - IDLE=1?

Hardware Installation IP 240Shielding of cable connections on the IP 240WarningTo ensure noise immunity, shielded twisted-pair cables must be used f

Page 302

C-18IP 240EWA 4NEB 811 6120-02bCyclic ProgramThe cyclic program is located in OB 1.At the beginning of the program, the inputs are mapped to memory bi

Page 303

C-19IP 240EWA 4NEB 811 6120-02bInterrupt ProgramThe interrupt program is located in the organization block OB 40.In the start-up program, the module i

Page 304

C-20IP 240EWA 4NEB 811 6120-02bC.7 Programming Example for “Position Decoding” ModePrerequisites, Settings, Blocks and AddressesThe programming exampl

Page 305

C-21IP 240EWA 4NEB 811 6120-02bThe following interrupt settings are required in the CPU: Process interrupt: OB 40, Interrupt I1 (S5 assignment: IA).

Page 306 - 11.4.1 Position Decoding Mode

C-22IP 240EWA 4NEB 811 6120-02bThe inputs and outputs are mapped onto memory bits at the beginning andend of OB 1. Within the test program, only the m

Page 307

C-23IP 240EWA 4NEB 811 6120-02bStart-up Program and Error ResponsesThe start-up program is in OB 100. When OB 100 has been processed, youcan check the

Page 308

C-24IP 240EWA 4NEB 811 6120-02bCyclic ProgramThe cyclic program is in OB 1.At the beginning of the program, the inputs are mapped to memory bitswhich

Page 309

C-25IP 240EWA 4NEB 811 6120-02bThe LEDs in the front panel allow you to observe the setting of the digitaloutputs D1 and D2 on the module.With the DIG

Page 310 - 11.4.2 Counting Mode

C-26IP 240EWA 4NEB 811 6120-02bInterrupt ProgramThe interrupt program is located in the organization block OB 40.In the start-up program, the module i

Page 311

C-27IP 240EWA 4NEB 811 6120-02bC.8 Programming Example for “Positioning” ModePrerequisites, Settings, Blocks and AddressesThe programming example desc

Page 312

IP 240 Hardware Installation4.3 Installation Examples4.3.1 InputsFig. 4-3. Connection of BERO Proximity SwitchesA1 has NO function (”1” signal)A2

Page 313 - 11.4.3 Reading Error Messages

C-28IP 240EWA 4NEB 811 6120-02bThe following interrupt settings are required in the CPU: Process interrupt: OB 40, Interrupt I1 (S5 assignment: IA).

Page 314 - 11.5 Sample Programs

C-29IP 240EWA 4NEB 811 6120-02bThe inputs and outputs are mapped onto memory bits at the beginning andend of OB 1. Within the test program, only the m

Page 315

C-30IP 240EWA 4NEB 811 6120-02bStart-up Program and Error ResponsesThe start-up program is in OB 100. When OB 100 has been processed, youcan check the

Page 316

C-31IP 240EWA 4NEB 811 6120-02bCyclic ProgramThe cyclic program is in OB 1.At the beginning of the program, the inputs are mapped to memory bitswhich

Page 317

C-32IP 240EWA 4NEB 811 6120-02bWith the control word DB 168.DBW 38 FUNCTION = B#(21,1)and brief activation of the input I 1.0 (M190.0), position 1 is

Page 318

C-33IP 240EWA 4NEB 811 6120-02bThe LEDs in the front panel allow you to observe the setting of the digitaloutputs D1 and D2 on the module.With the DAV

Page 319

C-34IP 240EWA 4NEB 811 6120-02bInterrupt ProgramThe interrupt program is located in the organization block OB 40.In the start-up program, the module i

Page 320

IndexEWA 4NEB 811 6120-02a

Page 321 - 12 Response Times

IP 240 IndexIndexAABIT 7-15, 10-36, 10-85,10-86, 10-88Actual value 7-3, 8-3, 10-23,10-28, 10-57, 10-61,10-76, 10-79- acquisition 7-17, 7-26, 10-26-

Page 322 - Response Times IP 240

Index IP 240Communication 11-2- cycle 11-2, 11-7- errors 6-6, 7-25, 8-13, 9-7,10-36, 14-1, 14-3,14-6- error flags 6-6- resetting 11-8, 11-9- start 1

Page 323 - IP 240 Response Times

Hardware Installation IP 240Incremental Encoders(with symmetrical outputs to RS 422 A)Fig. 4-4. Connection of Encoders with Symmetrical Output Sig

Page 324 - 12.3 Firmware Execution Times

IP 240 IndexDD subminiature socket connector 2-4DA1 7-13, 7-26, 8-4, 8-5,8-14, 11-10, 11-14DA1F 7-26, 8-3, 8-14,11-13, 11-16DA1S 7-26, 8-3, 8-4, 8-1

Page 325

Index IP 240Encoder- signal 2-2, 2-4, 4-8 ... 4-10,5-7, 6-1- signal forms 13-1- signal level 5-7- signal matching 5-1- supply 2-2, 2-4, 2-7, 5-1- su

Page 326

IP 240 IndexHHardware 7-18- fault 2-7, 6-3, 6-6, 10-36,14-1- fault flag/code/message 6-6, 14-1- version 7-18, 8-7, 9-5, 10-85HOLD time 13-7HW Hard

Page 327

Index IP 240JJob request 11-4- identified 11-3- identifier 11-11- number 10-37, 10-61, 10-74,11-1, 11-4, 11-7- register 11-1, 11-2, 11-4,11-5, 11-7,

Page 328

IP 240 IndexParameter 10-86, 10-91, 14-3- assignment 7-18, 8-7, 10-85- assignment errors 6-6, 6-7, 7-18, 7-23,7-25, 8-7, 8-11, 8-13,9-5, 9-7, 14-1,

Page 329 - 13 Encoder Signals

Index IP 240REF1 11-14REF2 8-3, 11-15REF bit 7-5, 7-6, 7-14, 8-5Reference- bit 7-15, 7-20, 8-8, 8-15- signal 2-2, 7-16- tracks 7-1, 7-4, 7-5, 7-8,7-

Page 330 - 13.1.2 Timing Requirements

IP 240 IndexStatus bit- DRBR 7-14, 10-33, 10-60,10-79- MESE 10-47, 10-60, 10-79- NPUE 10-34, 10-60, 10-79- RICH 10-5, 10-18, 10-59,10-79- RIUM 10-60

Page 331 - IP 240 Encoder Signals

Index IP 240Write- control bit 10-90- modified distance values 10-90- modified position values 10-90- modified zero offset 10-90- position data for

Page 332 - Encoder Signals IP 240

IP 240 Module Description and Accessories2 Module Description and Accessories2.1 General Technical SpecificationsTemperatureOperation 0 to +55 °C(In

Page 333

Module Description and Accessories IP 2402.2 Technical SpecificationsThe IP 240 has two independent channels. In the IP 252 expansion mode, the enc

Page 334

12345678PrefaceIntroductionAddressingHardware InstallationOperationFunctional DescriptionPosition DecodingCountingIP 252 Expansion 9Module Description

Page 335 - EWA 4NEB 811 6120-02 a

IP 240 Hardware InstallationIncremental Encoders(with asymmetrical outputs)Fig. 4-5. Connection of Encoders with Asymmetrical Signals: Push-Pull Enc

Page 336

IP 240 Module Description and AccessoriesInput frequencies Pulse inputs:- Symmetrical signals max. 500 kHz in position decoding and positioning mode

Page 337 - 14 Error Messages

Module Description and Accessories IP 2402.2.3 Inputs/OutputsThe IP 240 provides two options for connecting sensors to the pulse inputs:• All senso

Page 338 - Invalid hysteresis

IP 240 Module Description and AccessoriesData for rated voltage 5 V 24 Vsymmetricalpulse trainInput voltage ranges to RS 422 A”0”-Signal - 30to+ 5.

Page 339 - 14.4.1 Parameter Errors

Module Description and Accessories IP 240 Digital outputsNumber of outputs 4 (2 per channel)Galvanic isolation yesin groups of 1Supply voltage VpR

Page 340 - 14.4.2 Data Errors

IP 240 Module Description and AccessoriesEncoder supplyThe power supply for 5 V encoders taken from the programmable controller's power supply

Page 341 - =02 Error on selecting HASY

Module Description and Accessories IP 2402.4 Order NumbersOrder No.Module without instruction manual 6ES5 240-1AA12Adapter casing for 2 modules in

Page 342 - 14.4.3 Communications Errors

IP 240 Addressing3 AddressingThe IP 240 module reserves an address space of 16 bytes in the I/O areas. All data are exchangedvia these areas, which

Page 343 - Adapter Casing (S5 Adapter)

Addressing IP 240Switch settingsI/O area(P)extendedI/O area(Q)I/O area1281441601761922082242400163248648096112144128160176192208224240Startingaddres

Page 344 - A.1 Prerequisites

IP 240 AddressingUse of the IP 240 in expansion units S5-183U, S5-184U, S5-185U and S5-186UIf you use the IP 240 in one of these EUs, set the start

Page 345

IP 240 Operation5 OperationBefore startup you must set various coding switches on the module. You can stipulate• interrupt generation with switchban

Page 346

Hardware Installation IP 240Fig. 4-6. Connection of Encoders with Asymmetrical Signals:Open-Collector Encoder Output CircuitConnectorX2/X4Z*9MB*A*L+

Page 347 - A.4 Interrupt Processing

Operation IP 2405.1 Settings for Interrupt GenerationThe processing of interrupt signals makes it possible to respond rapidly to status changes. In

Page 348 - A.5 Technical Specifications

IP 240 OperationIf several IP 240 modules use one interrupt circuit, the current interrupt source must bedetermined by reading the interrupt request

Page 349 - (Adapter Casing and IM 463-2)

Operation IP 240Fig. 5-3. Allocation of Coding Switches on Switchbanks S1 and S2 to Interrupt Generation with I/O Byte 0PB 0.0 0.1 0.2 0.3 0.4 0.5 0

Page 350 - B.1 Addressing S5 Modules

IP 240 OperationExample for setting the coding switchesThree IP 240s are to be enabled for interrupt generation. One IP 240 is to be operated as mas

Page 351 -  Page area

Operation IP 240Additional programming in the organization blocks for the S5-115U:a) The interrupt service routine must be programmed in an FB so th

Page 352

IP 240 Operation5.3 Matching to Encoder SignalsEncoders with 24 V DC signals and encoders which generate signals to the RS 422 A or a similarstandar

Page 353 - Positioning Module

Siemens AGAUT E 148Postfach 1963D-92209 AmbergFederal Republic of GermanyFrom:Your Name:Your Title:Company Name:Street:City, Zip Code:Country:Please

Page 354 - C.1 Overview

Remarks FormYour comments and recommendations will help us to improve the quality and usefulness ofour publications. Please take the first available o

Page 355 -  Examples:

IP 240 Hardware InstallationSIEMENS provides the following prefabricated cables for connecting a 6FC9320-3..00 incrementalencoder to the IP 240:Cabl

Page 356 - Function FC 171 (STRU_DOS)

Hardware Installation IP 2404.3.2 OutputsFig. 4-8. Connecting the Load to the Digital Outputs on the IP 240+++orVp+VpVpVpX3/X5Vs=Supply voltage((1

Page 357 - Function FC 172 (STEU_DOS)

6 Functional Description7 Position Decoding8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Interchange with the IP 24012 Response Times13 Enc

Page 358 - EWA 4NEB 811 6120-02b

Figures5-1. Locations of Switchbanks and Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 1 5-2. Allocation of Coding Sw

Page 359 - Function FC 164 (STRU_WEG)

IP 240 Operation5 OperationBefore startup you must set various coding switches on the module. You can stipulate• interrupt generation with switchban

Page 360 - Function FC 170 (STEU_WEG)

Operation IP 2405.1 Settings for Interrupt GenerationThe processing of interrupt signals makes it possible to respond rapidly to status changes. In

Page 361

IP 240 OperationIf several IP 240 modules use one interrupt circuit, the current interrupt source must be determi-ned by reading the interrupt reque

Page 362 - Function FC 167 (STRU_POS)

Operation IP 240Fig. 5-3. Allocation of Coding Switches on Switchbanks S1 and S2 to Interrupt Generation with I/O Byte 0PB 0.0 0.1 0.2 0.3 0.4 0.5 0

Page 363 - Function FC 168 (STEU_POS)

IP 240 PrefacePrefaceIn addition to open and closed-loop control, the programmable controllers of the SIMATIC S5 fa-mily execute special tasks such

Page 364

IP 240 OperationExample for setting the coding switchesThree IP 240s are to be enabled for interrupt generation. One IP 240 is to be operated as mas

Page 365

Operation IP 240Additional programming in the organization blocks for the S5-115U:a) The interrupt service routine must be programmed in an FB so th

Page 366

IP 240 Operation5.3 Matching to Encoder SignalsYou can connect the following to the IP 240 as position encoders:• symmetrical incremental encoders w

Page 367

7 Position Decoding8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Interchange with the IP 24012 Response Times13 Encoder Signals14 Error Mes

Page 368 - Addresses

Figures6-1. Data Interchange in Programmable Controllers with Multiprocessor Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 369

IP 240 Functional Description6 Functional Description6.1 Module FunctionsThe IP 240 is an intelligent I/O module for acquiring and preprocessing enc

Page 370 - Cyclic Program

Functional Description IP 2406.1.2 Digital OutputsThe digital outputs on the module can be used for direct driving of actuators and displays forpart

Page 371 - Interrupt Program

IP 240 Functional DescriptionWirebreak/short-circuit (red WB LED)When a channel is set to symmetrical pulses, the encoder cable is monitored by eva

Page 372

Functional Description IP 2406.2.1 Configuring Function BlocksConfiguring function blocks serve to select the modes. Each mode is assigned its own f

Page 373

IP 240 Functional Description6.3 Restart Characteristics6.3.1 Power OnAfter ”Power on” a test routine is initiated on the IP 240 to verify proper fu

Page 374

IP 240 IntroductionIntroductionThe following pages contain information which will help you to use this manual.Description of ContentsThe contents of

Page 375

Functional Description IP 240Table 6-2. Error Flagging in the PAFE ByteBit numberPAFE byteError category01237Hardware faults, communication and da

Page 376

IP 240 Functional Description6.4.2 Parameter and Data ErrorsParameter errorsWhen parameter errors occur, the function block sets bit 1 in the PAFE b

Page 377 -  DB 170.DBB 45 Hysteresis

Functional Description IP 2406.5 Multiprocessor OperationIn the S5-135U and S5-115U PLCs with multiprocessor capability,the IP 240 can also be used

Page 378

8 Counting9 IP 252 Expansion10 Positioning11 Direct Data Interchange with the IP 24012 Response Times13 Encoder Signals14 Error Messages7 Position Dec

Page 379

Figures7-1. Counting Direction in Position Decoding Mode . . . . . . . . . . . . . . . . . . . . . . . . 7- 17-2. Actual Value and Overrange in Positi

Page 380

IP 240 Position Decoding7 Position Decoding7.1 ApplicationIn this mode, the IP 240 can be used in all applications in which position changes are to

Page 381

Position Decoding IP 240Changing the counting directionTo change the counting direction, you must interchange the encoder signal connections asfollo

Page 382

IP 240 Position DecodingThe zero offset value thus always offsets the zero point of the actual value range to the referencepoint. A zero offset can

Page 383

Position Decoding IP 240Example:The position encoder emits 1000 pulses/revolution. The spindle has a gradient of 50 mm/revolu-tion. The position enc

Page 384

IP 240 Position DecodingTransfer of the initial values from the data block to the IP 240The limit values are initially transferred to the IP with co

Page 385

Introduction IP 240• Automating with the S5-115USIMATIC S5 programmable controllersHans BergerSiemens AG, Berlin and Munich 1989Contents:- STEP 5 pr

Page 386

Position Decoding IP 240Triggering a process interruptEvery REFn bit can trigger a process interrupt when it goes from 0 to 1 (rising edge). You mus

Page 387

IP 240 Position DecodingIf you set bit DIGn/9 to ”0”, a change in the REF bit from 0 to 1 sets the output only when theactual value enters the track

Page 388 - IP 240 Index

Position Decoding IP 240Fig. 7-4. Evaluating the Reference Tracks1) The interrupt request is reset when the interrupt request bytes are scanned.

Page 389 - Index IP 240

IP 240 Position DecodingTraversing speed and track widthIn order for entry into a track to be detectable in every module firmware cycle, the travers

Page 390

Position Decoding IP 240Defining the hysteresisThe hysteresis can be preset in BCD in the data block in data byte DR 22 ( Section 7.3.3) in therang

Page 391

IP 240 Position DecodingIf the direction is reversed outside the hysteresis range following switching of an output, theswitching point at the track

Page 392

Position Decoding IP 240The output is switched analogously upon entry into and upon exit from the upper track limit.The output is reset when the act

Page 393 - 6-1, 10-12, 10-13

IP 240 Position Decoding7.2.5 Forcing the IP OutputsYou can use control bits DAnF and DAnS (n=1 for digital output 1 or n=2 for digital output 2) to

Page 394

Position Decoding IP 240In addition, the following are carried out on the basis of the specified configuring data:• any outputs that are set are res

Page 395

IP 240 Position DecodingInvoking the interrupt servicing OBs in the S5-150U and S5-155U PLCs (150 mode)In the S5-150U and S5-155U (150 mode), the a

Page 396

IP 240 IntroductionConventionsIn order to improve the readability of the manual, a menu-style breakdown was used, i.e.:• The individual chapters can

Page 397 - 6-1, 7-1 ... 7-3, 7-5

Position Decoding IP 2407.2.9 Reference Point ApproachSince incremental encoders cannot indicate the absolute position after a power failure, a re-f

Page 398 - EWA 4NEB 811 6120-02

IP 240 Position DecodingAborting a reference point approachThe reference point approach initiated by setting the REFF bit is normaly terminated, fol

Page 399

Position Decoding IP 2407.3 Initializing Standard Function Blocks and Data Block Assignments7.3.1 Configuring Function BlockFB 169 (STRU.WEG) Confi

Page 400

IP 240 Position DecodingTable 7-5. Parameters for Configuring FB 169Name Para- Data Descriptionmeter typetypeBGAD D KF Module starting addressKANR

Page 401

Position Decoding IP 240DIG1 : KM 0000 0000 Bit 0 to Bit 7:0000 0000 Assignment of digital output D1 to reference tracks 1 to 8 - Bit n = 1 Output D

Page 402

IP 240 Position DecodingPRA2 : KM 0000 0000 Assignment of a process interrupt to bits in the status area0000 0000 Bit n= 1 A process interrupt is ge

Page 403

Position Decoding IP 240Technical SpecificationsBlock number : 169Block name : STRU. WEGPLC Library numberCall length/Block lengthCPU Processing tim

Page 404

IP 240 Position Decoding7.3.2 Control Function BlockFB 170 (STEU.WEG) Control function block for position decoding mode.Functional descriptionThe co

Page 405

Position Decoding IP 240NoteScratch flags and system data areas are used in the standard function blocks for thepurpose of data interchange with the

Page 406

IP 240 Position Decoding7.3.3 Contents of the Data BlockThe data block to be created must comprise at least 68 words (DW 0 to 67). The number of the

Page 407

Introduction IP 240Manuals can only describe the current version of the programmable controller. Shouldmodifications or supplements become necessary

Page 408

Position Decoding IP 240Control bitsDL 17DR 177Databyte6 5 4 3 2 1 00000DA2F0DA2S0DA1F0DA1SREFFAMSK000BitAMSK =1 All process interrupts for the chan

Page 409 - 5 Operation

IP 240 Position DecodingInterrupt request byte for Channel 1 and Channel 2Channel 1Channel 1Channel 2Channel 2DL 20DR 20DL 21DR 217Databyte6 5 4 3 2

Page 410 - 5.1.1 IRx Interrupt Circuits

Position Decoding IP 240Identifiers of tracks used7 6DL 29DR 29Databyte5 4 3 2 1 00TR60TR50TR40TR30TR20TR1Bit0TR80TR7TRn =1 The track limits for thi

Page 411 - 5.1.2 I/O Byte 0 (PY)

IP 240 Position DecodingFinal value of the first track (END 1)7 6DL 36DR 36DL 37DR 37Databyte5 4 3 2 1 000000Bit00001040 0 SG103101102100SG =1 The f

Page 412 - Enable for I/O byte 0

Position Decoding IP 2407.4 An Example of Position Decoding: Heat TreatmentThe induction coil of an induction furnace for heat treatment must move a

Page 413 - IP 240 Operation

IP 240 Position DecodingFunctional descriptionAll data required for operation must be entered in a data block (DB 10 in the example). The datainclud

Page 414 - 5.2 Output Inhibit (BASP)

Position Decoding IP 240StipulationsInput card Module address 4Output card Module address 12Analog output card Module address 128 (1st output)IP 240

Page 415

IP 240 Position DecodingInputs, outputs, flags, timers and counters usedOPERAND SYMBOL COMMENTI 4.0 EMERG STOPI 4.1 START START RUNI 4.2 ON INTPNT

Page 416

Position Decoding IP 240DB10 LEN=38

Page 417

IP 240 Position DecodingDB12 LEN=73

Commentaires sur ces manuels

Pas de commentaire